Cannabis Germination:

Use these steps as a guide line...
1) Add two tablespoons of bleach to one gallon of distilled water.
2) Soak seeds for 24 hours.
3) Every six hours check for cracked cannabis seeds, if you find one take it out. Place in your medium with pointed end up.
4) After 24 hours place the remaining seeds in your medium.

There are many ways to germinate your marijuana seeds... this one is recommended by one of our resident grow expert.

CUTTINGS

CARE OF MARIJUANA CUTTINGS

Once cuttings are planted and watered, place them under a flourescent
lamp where they will stay until rooted. Softwood cuttings require bottom
heat of about 21°C (71 °F), which is usually room temperature for most
propagation areas. Keeping trays of cuttings on cold concrete floors will
slow down root development. Avoid high temperatures in the tray as they
force the cuttings to produce top growth instead of roots, using up food
reserves in the cutting.
High humidity levels help reduce water loss from the cutting's leaves, but
they can also encourage plant diseases to multiply and attack your young plants.
If you use a clear dome over your tray, remove it at least once a day for
a few minutes to “air out” the tray, and wipe condensed moisture out of the cover,
it simply interferes with light reaching the cuttings.
While domes can reduce water loss from cuttings they can also trap heat.
Keep the flourescent lamps at least a foot (30 cm) above the top of the
dome. A small thermometer placed in the propagation tray will help keep
track of propagation temperatures.
Since cuttings cannot spend their whole lives under a dome, the sooner
they can adapt to life in open air, the better. Once cuttings have lived
inside the dome for a week or so, by removing the clear cover for a few
hours during the light period, watching carefully for wilting. If they do show
signs of stress, replace cover and try again a few days later. While some
crops take longer than others to root, plants that seem “addicted” to their
covers may be suffering from fungus disease - treat with "No Damp"
according to directions. The other possibility is high temperatures inside
the dome. (above 24°C=75°F )


FEEDING AND WATERING

Newly planted cuttings are “ watered in” well with a mix of water and
powerthrive (one tablespoon/ one gallon) to supply vitamins that reduce
plant stress, and also to provide good contact between the cutting's stem
and the grow medium. If the cuttings are cared for under moderate
conditions (21°C tray temperature, fluorescent lighting ) they will likely not
need watering for about 59 days. Plant rooting in fast - draining mediums
such as perlite or hydrocorn may need watering more frequently. Once
cuttings can stand up well with the covers removed, they will need watering
more often. Keeping cuttings too wet will cause root and stem rot; letting
cuttings dry out will kill them just as quickly . Let experience and the
appearance of the cuttings be your guide.

Giving new cuttings fertilizer can actually cause slow rooting - the plants
have no good reason to grow roots ! Once cuttings show signs of having
new roots- either fine white roots showing on the bottom of the rockwool
cube or new light green top growth start feeding cuttings with mild fertilizer
solution. A good “ baby food” for newly- rooted cuttings is 1/3 strength
flowering fertilizer. This food helps the new plants to grow deep, strong
roots, without forcing top growth When cuttings are definitely rooted and
producing new top growth, with the dome permanently removed, lower the
flourescent lamps gradually closer to tops of cuttings, watching closely for
wilting or signs of stress. It's possible to gradually drop the lamp within
8cm (3 inches) above the growing tips. If you are keeping these rooted
cuttings under the fluorescent lamps, be sure to raise lamps as plants
grow taller to avoid cooking new top growth Continue watering and
feeding as required, using mild fertilizer until they are transplanted to
stronger light levels.

LIGHTING

Keep Fluorescent lamps on for 18-24 hours a day while cuttings are
rooting . Once rooted and being fed the mild fertilizer solution, they will
need a six hour night to grow best. Match the timing of the dark period of
the cuttings to the night, they will have when transplanted into a grow-room
or greenhouse.

FUNGICIDES AND PESTICIDES

Since cuffings are taken from healthy, disease and pest-free stock plants,
and the grow mediums we use for rooting cuttings are considered
disease-free at the start, we usually don't have to use fungicides until a
week or so after starting the cuttings - use "No Damp" fungicide solution
as a foliar spray or water it into the medium. (1 Oml "No Damp" with one
liter of water) Repeat once a week as a precaution while cuttings are
rooting.

Insects can be very destructive to young plants. Spider mites and fungus
gnats are two of the worst insects to discover in a propagation tray, since
they can destroy all the cuttings and set back the garden. "Bug Kill" works
well against spider mites - be sure to spray underside of leaves regularly
to kill adults and hatchling as they emerge from eggs. Spray inside of tray
to pick off strays crawling from plant to plant.

Fungus gnats lay eggs in the grow medium, and when the eggs hatch, their
tiny larva chew new roots to suck food from the plants. They weaken plants
and create disease problems too. They carry fungus spores on their
bodies, which attack plants through their damaged roots. Use "sticky
cards" to check for signs of Fungus gnats In the propagation tray, and treat
all cuttings with Wilson's "Potting Soil Insecticide Dust" or similar mild
pesticide if signs of gnats appear.


Germination and More

Starting Media and Nutrients

Any propagation medium must be thoroughly soaked before seeds are sown to
assure uniform distribution of moisture. There are many different propagation media
available. Seeding trays can be filled with a soilless mix, such as peat and perlite. Peat pellets
are also popular starters. Seedlings grown in a soilless mix may have enough
nutrients available to them from the media that they would not need any additional
nutrients for the first few weeks of growth, and therefore could be watered with freshwater only. However, seedlings in an inert medium, such as rockwool or oasis, will definitely require nutrient solution at all times.
Rockwool blocks are available in several sizes, and are designed so that seeds can be placed directly into seeding
cubes, then, as the plants develop, the cubes can be nested inside larger blocks, for a "pot in a pot" system. This minimizes transplant shock, since the larger block consists of the same
material as the germination cube. Oasis horticubes are similar to rockwool cubes in that they are inert, sterile blocks with excellent drainage. Other cubes made of urethane foam and paper fiber are also available.
Tomato seeds should be sown 1/4 to 3/8 inch (0.6 to 1cm) deep. Sprinkle a thin layer of vermiculite over the
seeds or cover the germination cubes or pots with a large piece of clear plastic to conserve moisture at the
surface. Avoid the use of plastic if the cubes receive direct sunlight, as the temperature may get too hot for
good germination. The plastic must be removed as soon as emergence begins.
Seedling system design
Overhead watering is the most common method used for germinating seedlings. It is important for the seedlings to be in full sun and at the proper temperature as soon as germination occurs. When watering, the water must be
sprinkled uniformly over all seedlings to avoid uneven growth. The plants must be checked often to assure they do not become water stressed. Flood and drain (ebb and flow) systems can also be very effective for germinating
seedlings. Nutrient solution or water floods a shallow tray containing the sown cubes
or pots, providing moisture from the bottom, which will diffuse throughout the
propagation block by capillary action. Once the blocks are evenly moist, the tray is
drained, which allows the cubes or pots to drain and assure aeration of the roots. This
process will need to be repeated often throughout the day, but may not need to be
done at all during the night. The advantages of this system are even moisture, no
physical beating of the leaves and tender plants, and low labor costs (especially if
timers are used).In any event, the temperature of the irrigation solution should
be at least 18° C (64° F). Irrigating seedlings with colder water will result in slower growth. During winter months,
especially in Northern latitudes, supplemental light may be required for strong growth of seedlings. The lights should operate 14 to 18 hours per day.


Marijuana Transplanting

The three stages of early development are germination, post-emergence, and
transplant. Germination should occur within one week of seeding, post-emergence is
generally 5 to 12 days, and transplanting should be done between 12 and 14 days
from seeding. Once true leaves appear (during post-emergence), seedlings should be
transferred into larger growing blocks (pots) from the original seedling cubes, then
evenly spaced to maximize light to each plant, without any crowding or shading. The
transplants must be spaced so as not to touch one another, and may need to be
spread several times during their growth. If crowded, the plants will become spindly. A
good transplant is one that is as wide as it is tall. If plants are somewhat "leggy", with
long stems, they can be transferred into the larger blocks with their stems bent 180° ,
so the original cube is upside-down inside the larger block, and the main stem forms a
"U" shape, emerging vertically upward from the block. Tomato plants readily grow
adventitious roots from the stems if given the opportunity, producing a stronger plant
with more roots. Adventitious roots will grow from the bent stem inside the block.
Transplanting into the final growing media should be done before any flowering. The final growing
media should be properly leached and moistened and be at the proper temperatures before plants
are brought in. Plants should be irrigated with nutrient solution immediately after moving.
The spacing of tomatoes in hydroponic systems can be much denser than in soil. As little as two
square feet per plant (0.2 square meters per plant) have been used with good yields and quality under
high light conditions. Spacing is a function of sunlight, so in areas of lower light wider spacing should be applied.
pH is a wonderful early warning system of problems before they happen, because it illustrates thecondition of your reservoir water!
A pH reading should be made from your reservoir. There are many factors that contribute to a changing
of the pH of your reservoir, but the most common will be due to your plants taking up nutrient and leaving
"salts" behind. A pH reading must be taken daily and preferably before you add nutrient (to give you an idea of what your plants are doing to the reservoir water) and a few hours after nutrient is added to the reservoir.
Our serious tip on pH's is getting the right pH tester. Most professional growers will stray away from any
electronic pH tester, as they tend to be inaccurate and often require calibration (which relies on a
calibrated pH solution). Our tip is to buy a cheap (<$5.00) liquid pH tester from a hydroponic shop that
gives readings in the colors Yellow, Green and Blue (these never need calibrating and will give 100%
accurate readings) Maintain nutrient pH between 5.6 and 6.2.
If your readings are low < 5.0, the reservoir water will be acidic. On the color meter this will be a yellow shade. This might be a good sign showing your plants are feeding and depositing "salts" into the reservoir changing the pH reading to "Yellow" or acidic. Simply ad "pH up" available from a hydroponics shop, to bring the pH back to Green (5.6 - 6.2) two hours after adding your nutrient. If your reading is high >6.2, the reservoir water will be alkaline. On the color meter this will be a blue shade. We often have found a reservoir going blue can be an early indicator of plant problems, especially when the meter goes blue on a continual basis. By adding "pH down" available from a hydroponics shop, you can bring the pH back to green (5.6 -
6.2) two hours after adding your nutrient. A non consistent pH (i.e. a pH that goes up and down like a yo-yo) is often a sign of lack of water conditioner: See Tip 3 on Water Conditioner


Parts Per Million (or PPM Meter)

If you're a serious grower you will understand the importance of a PPM Meter. People who don't use a PPM Meter on a daily basis are looking for trouble. Our serious tip on PPM is: Never, never, ever ad nutrient "by eye" as you will never know how many "parts per million of nutrient" are in your reservoir to start with. A marijuana plant is a living plant that has needs that might change from day to day. If the temperature happens to be a
bit low it might not feed that day. And what does the amateur grower do? Blindly throw another cup or three of 2 part nutrient, plus a splash of Hydro Minerals? This would mean the reservoir would have double the required nutrient that day and is heading for a disaster. Good PPM meters are often about $100. Professional growers will stay away from any PPM meter that requires calibration... believe me they are no good. The best PPM meter is one that is self calibrating. Professional growers tend to maintain PPM's at about 1600 - 1800. When adding nutrient they ad small amounts at a time so as not to exceed their PPM maximum and take PPM measurements over a period of time. Reservoir PPM's that go down are generally a good sign, showing plants are feeding and using the nutrient on a daily basis. Reservoir PPM's that are stable or go up are an early warning indicator that your plants are not feeding and the plants might be in stress for some reason or another. Read Water Conditioner and pH Tips sect ion for help in this regard. PPM Meters stop a major problem of over-feeding your plants, one of the top 5 causes of plant deaths in the growers bible.


The Water Conditioner

Water conditioner is an often unknown element when growing hydroponically. If you have read any outdated books by Rosenthal or his other hippie mates that you should "dump" or "flush" your reservoir every two weeks, then sit down, take your blindfold off and read this: As you have read above, plants use nutrient and dump salt and residues in the reservoir. Plants will sometimes use more of one element and less of another, which will cause solidification's of salts of one type or another in your reservoir.Rosenthal and his hippie mates got around this problem by flushing regularly which cleaned all salt build-up in the reservoir, and replaced the nutrient to the correct PPM's; only to repeat this procedure two weeks later! Many professional growers will not flush at all during the entire grow cycle and only flush two or three times in the flowering cycle!
They have perfectly balanced reservoirs, and no salt residue buildup! What is their secret?
Water Conditioner (a generalized name) also called "Bio-Acids" or "Plant Acids" or "Sea Acids" depending on the
manufacturer. in Australia they are called BIO-Earth Sea Acids and solve many growers reservoir imbalance
problems. Bio-Acids as I like to call them function to break down compounds found in soils and thereby release and chelate nutrients. When such organic plant acids are added to inorganic nutrient solutions or to a
fertilizer treated rockwool or soil, pH is naturally balanced, trace elements are naturally chelated and the
organic acid levels are greatly improved. Research shows conclusively that organic acids are so vital a component of plant chemistry, that when excluded from the cultivation equation, yields are drastically reduced. Significant improvements are noticed when re-introduced and normal plant processes are restored. Talk to your local hydroponic shop about water conditioners and bio/plant acids which will reduce the amount of nutrient you waste every flush. If your hydro shop doesn't sell this product, go somewhere else. Some hydro shops make their living on
ignorant people who flush their nutrient down the drain on a regular basis.


Cannabis Light

Often an underestimated element of growing marijuana: Many amateurs strive to find the reasons why they only pull two ounces of bud a plant, when a professional using the same strain will reap a pound per plant.
Professionals tip of the day: Lights = Poundage (given all other factors are accounted for) Generally speaking, 1000watt HID, or 1000w MH lamps will provide the heaviest crops. The more light in the grow
area, the more heavier resin laden buds you will pull. This might cause some controversy out there, but this statement is reality because it's simple and it works: more light means more bud, from top to bottom! Most professionals will use a light moving system in larger areas to save on costs of running electricity thirsty ballast's.
Professionals find that more light will lower the grow cycle times, and will reduce the flowering cycle time, so that your risk is also reduced. "All other factors accounted for" are balanced pH, PPM's, water conditioning, rare-mineral supplement, temperature, airflow, co2 and humidity. Persons concerned with large power consumption, consider this: A GEC electric heater or an air-conditioner can use 2500w constantly whilst in use. 2 x 1000w Metal Halide systems will use a little over 2200w total. Your growing time is reduced with more light so you can switch to flowering cycle quicker. On a 12 hour on, 12 hour off grow cycle you are only using 1100w in a 24 hour period! More lights = greater heat. Make sure you read the temperature, Free Co2, airflow & ventilation tips to keep a constant grow room temperature. I don't get into discussions about which is better HID or MH. Professionals that I talk to find that the end results are pretty much the same for each lamp, and stress that people like Rosenthal and his hippie mates get their g-strings in a knot over color spectrums and the like when the most important factor is the amount of lumens (or light) produced per square foot of growing space. Finally, another modern professional tip: To reduce noise from your HID or MH Ballast, sit them on a block of fire-resistant "grodan" grow-wool. This will simply cut a huge amount of Ballast noise emanating from your grow room. If you're worried about the grodan, you can slip a piece of concrete sheeting between the Ballast and the grodan to reduce heat...

- 1000w Ballast on top
- Fireproof and Fire-resistant concrete sheeting
- Fire-resistant grodan slab to cushion sound


Temperature, Free C02, Airflow, Humidity and Ventilation

Also another in the top 5 casualty list: Incorrect temperature, airflow and ventilation.
Firstly with airflow and ventilation: When using high temperature globes in a confined space it is
essential to have adequate airflow and ventilation. If this criteria is not met, your plants may burn
or dry in the heat or event worse start a fire. Professional growers state that you can never have enough ventilation indoors! Install a ceilingexhaust fan in reverse to bring in air from outside, and install a second one normally to pump the air out of the room, so you know your grow room is getting "fresh" outdoors air and not stale
indoor air. If this doesn't reduce heat enough, buy exhaust fans certified to pull 450m3+ per
hour; they're worth the money. Install cheap "central heating" piping if you have to pull air from
an area away from the grow room. See "reducing fan noise" picture for sound proofing.
Use rotating floor fans to "stir up" and circulate air within the grow room.
Humidity can be a difficult problem especially in flower cycle. Excess humidity can cause molds
to rot your marijuana. Professional growers are of the opinion that excess humidity can reduce
THC in your buds. Try and reduce your humidity to 50°- 60°. This can be an extremely difficult task at times,
especially when you have a room full of marijuana perspiring buckets of water out their leaves.
We found a simple and effective solution to reducing humidity, however we must warn that this will increase temperature. Its called free Co2.

FREE Co2

- By drawing Co2 from Gas Stove
- Use Duct tubing to grow room
- More tubing will cool the Co2
- Use existing Kitchen Fan

With this method, you can significantly lower humidity, control temperature and have abundant Co2
flowing over your plants from above for next to nothing. Temperature was controlled by turning down the flame, or increased by lighting another burner. There is no danger of naked flames in the grow room as flames remain in the kitchen. The kitchen had an existing exhaust fan that was secured above to some central heating duct pipe that
ran to the grow room. In hotter weather, the duct tubing was extended from 10ft to 40ft. By running the excess tubing up and down the roof, it reduced the temperature, however there was still abundant cool Co2 flowing into the
room. Humidity rose a little after this extension. I don't know if you can appreciate the sound of 4 Exhaust fans running at once, but one might compare it to a jackhammer from inside a grow room!
Here's more excellent expert tips on reducing fan noise:

- Cut hole in ceiling and fit ducting
- Attach exhaust fan to duct tube
- Attach 4 nylon lines to fan
- Join to roof above with single line
- Enjoy the peace and quiet!


Now finally, Temperature: Many of the temperature related topics were discussed in airflow
above, but this is a pointer that needs mentioning:. Controversial like always, we decided that what we read in Rosenthals and others books was a load of shit regarding temperature. Growers found cultivating marijuana strains at suggested temperatures of 25°c -27°c achieved hemp quality ganja which was a shit smoke.
The same strains grown at 35°c - 37°c were rocket fuel and physically blew your socks off.
Maybe it was the particular strain, but we will advise you as time goes on as professional growers give me information on this topic. Here are some tips on tailoring the fertilizer mix to the particular stage of a plant's
development....

Stage Cutting Early Vegetative Rapid Vegetative

Days 7-21 6-10 0-14

Fertilizer Phosphorus Grow/Bloom Grow Formula
Superthrive, Mixture high nitrogen low
H202, Moderate levels phosphorous
WillardsWater of nitrogen and phosphorous


Lighting 7500K Flour 5600K Halide Iwasaki 3700K Halide Eye Lighting Iwasaki


Stage Early Bloom Late Bloom Finish/Fruiting

Days +/- 14 +/- 32 +/- 10

Fertilizer Grow/Bloom Mixture Bloom Formula Mixture Organic Mix
Low Dosage Low Nitrogen

Lighting 2100K Retro HPS 2100K Retro HPS (Iwasaki) 2100K Retro HPS (Iwasaki)



GENERAL MARIJUANA GROWING INFORMATION

Energy Supply

Every living creature needs energy to live, develop and grow. For most living creatures
the most important energy source is sugar (glucose). Green plants are the only ones
capable of producing these sugars themselves. These sugars are produced from water,
which is being absorbed through the roots and carbon dioxide, which is being absorbed
from the air. In order to make sugar out of these matters, the plant needs light. This
process takes place in the green pigment, (chloroplasts) and is called; photo synthesis.
(photo=light, synthesis=produce, therefore photo synthesis means; produce through
light).


Cannabis Lights

As above, the plant needs light for its energy supply. Because we are talking about
growing indoors, we will have to supply a light source. Normal lamps are less suitable for
the job. A plant needs light of certain wavelengths, which are not or not present or strong
enough in normal lamps. The some company’s. recommend the use of type SON T lamps.
They are suitable for both the growth stage, as well as the flowering stage. Ballast's are
necessary for these lamps. Ballast's of 600 watts have the most favorable output of
delivered light per watt. Depending on the variety we recommend to use between 400 and
800 watts per m2. With insufficient light the plant remains light-green in colour and
becomes unnaturally thin and protracted. The buds will also remain smaller with
insufficient light.

Saving on marijuana light is stealing from yourself!.

The efficiency of the lighting in the grow room can be strongly increased by covering
your grow room with reflective materials. You could paint the walls with mat white paint
or cover the walls with white plastic. Ensure that the room can be easily cleaned because
spraying might pollute the walls quite a bit. Most sorts of your "favorite plants" remain
in their vegetative (grow) state when the light cycle is maintained at 18 hours. Your
"favorite plant" is a so called short day plant, in this we mean that the plant will start
flowering when we shorten the light period. Plants are initiated into the flowering phase
by shortening the day period to 12 hours on and 12 hours off per 24 hours. Your
"favorite plants" that originate from the tropics do not react to changing day lengths
but flower after a certain time. That is logical if you realize that a day in the tropics lasts
approximately 12 hours the whole year round. The lamp must hang at a distance from the
plants that will not cause any scorching of the leaves. This distance differs with the
wattage of the lamp. We recommend a distance of: 400 Watt- 45 cm; 600 Watt- 85 cm;
1000 Watt- 105 cm. Don't hang the lamp any higher above the plants than necessary.


Carbon Dioxide

Carbon dioxide is absorbed by the plant through its pores. In small spaces, the present
carbon dioxide will soon be used up. Therefore the air in the growroom has to be
replenished regularly. For this you need to buy an exhaust fan. You have to make sure
however that it is powerful enough to replenish all the air at least 20 times per hour. The
fan can be connected to a time clock or thermostat and/or hygrometer. To provide for an
optimal gas change for the plant we also recommend to place an oscillating fan in the
growroom, in order to have a constant air flow along the plants.

In urban areas the carbon dioxide concentration might increase to a higher value than the
normal 0.03% which is 300 ppm (parts per million). From regular horticulture we know
that adding extra carbon dioxide to a concentration of 0.15% highly stimulates the
growth and the speed of photo-synthesis. This results in faster and higher yields. This
yield increasing effect is most powerful with intensive lighting and inert substrate
cultivation, such as rockwool. Another effect that has been reported by growers is the
fact that a higher carbon dioxide concentration makes the plants less sensitive to higher
temperatures.

A third effect is that there is less need to ventilate (unless the humidity is too high)
because you don t depend on carbon dioxide from the outside air. In greenhouses the
exhaust gas of oil-fired central heating is conducted back into the greenhouse. To raise
the carbon dioxide concentration in grow rooms, it is usually supplied from bottles. There
are two ways to provide for more carbon dioxide in the growroom.

(I) The cheapest way is to buy a pressure regulator that can be adjusted so that after
ventilation (when carbon dioxide is dispelled from the room) the right amount of carbon
dioxide will be released inside again. The exact quantity you need is something you have
to work out yourself. You calculate this as follows: Length x Width x Height of the
growroom in meters gives the volume of the room in cubic meters. One cubic meter is
1000 liters. If for instance you want to increase the concentration from 0.03% to the
required level of 0.15%, you need to add 0.12% carbon dioxide. Suppose your grow room
measures 2 x 2 x 3m , which is 12000 liters. 0.12% of 12000 liters is 14.4 liters. So to this
room, 14.4 liters of carbon dioxide should be added to obtain an optimal gas
concentration. This needs to be done after every exhaust period. This only needs to be
done during the "day period", because the plants only use carbon dioxide when the light
is on. One kilo of carbon dioxide is approximately 500 liters. So a 10 kilogram bottle
contains approximately 5000 liters. This means that a grow room of 2 x 2 x 3m needs two
bottles per grow period.

(II) The second system to keep the concentration of carbon dioxide at the right
percentage is by the use of a carbon dioxide meter and a computer controlled pressure
regulator. The concentration of gas is constantly measured and the computer makes sure
that with a too low concentration, the right quantity of gas is added. The ventilator could
also be connected to this computer. This system is not cheap but once it has been
installed you don't need to worry about it anymore.


Marijuana Temperature

The recommended day temperature with the cultivation of your "favorite plant" lies
between 25 and 28 deg C. With higher temperatures the growth will slow down and the
yield and quality will decrease (many growers experience this during summer). In the
dark, other chemical reactions occur in the plant than in daytime. A lower temperature
suits them best. The recommended night temperature lies between 15 and 20 deg C. With
temperatures lower than 15 deg C the growth is obstructed, lower than 10 deg C the
growth stagnates and lower than 5 deg C will damage the plant. The most ideal situation
would be a grow room with both heating and air-conditioning.

The roots are especially sensitive to low temperatures. The absorption of nutrients
through the roots is an active process. This means that the root needs energy to absorb
the nutrients, but also to be able to select these nutrients. The root can, to a certain
point, choose which and how much nutrient it absorbs. This process can be seriously
disturbed with too low a temperature, because then there is insufficient energy available
for this process. Therefore you have to make sure that when watering the plants the
water is approximately 23 deg C. With cultivation on rockwool the nutrient solution
temperature is held constant with the use of a special twin glass sleeved aquarium heater
that has a built-in thermostat.


Water

It speaks for itself that the plant must receive enough water. Don't forget that the water
needs of a plant, in time, can strongly differ. Freshly transplanted seedlings and cuttings
require less water than a flowering adult plant. It is of great importance that the plant has
a well developed and healthy set of roots for the optimal absorption of water (and the
nutrients that will be mentioned here after).
Most of the water absorbed by the plant is evaporated via the leaves. By doing so the air
in the grow room becomes humid.


Relative Humidity

The humidity will decrease because of the ventilation in the grow room. To measure the
humidity , you need a hygrometer. A high relative humidity is very important for the
seedlings in the beginning of the cycle (between 60% and 75%). At the end it is
important to keep the RH low (40% to 50%) because it could cause the buds to rot. If
the humidity is too high, you need to exhaust more air. If the humidity is too low you
could first try to increase it by hanging some wet (clean!) towels or sheets in the room
and by often spraying the underside of the leaves (normal tap water). If this is not
sufficient you might consider buying a humidifier.


Nutrients in General

For the healthy development of a plant a number of nutrients are indispensable. The
following elements are necessary: carbon, hydrogen, oxygen, nitrogen, phosphorus,
sulphur, potassium, calcium, magnesium, iron, manganese, copper, zinc, molybdenum,
borium and chlorine. Carbon is being absorbed through carbon dioxide. (In carbon
dioxide one particle of carbon is attached to two particles of oxygen). Hydrogen and
oxygen are mainly absorbed by means of water. (In water two particles of hydrogen are
attached to 1 particle of oxygen). These matters have already been explained.


NITROGEN (N)
Nitrogen together with phosphorus and potassium are the main ingredients in normal
fertilizers. All proteins, also the ones in the plant, contain nitrogen. All enzymes (these are matters
that regulate the character and speed of the chemical reactions in the plant) are proteins.
Especially chlorophyl with which the plant produces sugars (with the help of light, water
and carbon dioxide) contain many proteins and therefore a lot of nitrogen. From the
previous you might understand why nitrogen is such an important nutrient for the plant.
When a plant receives too little it is first shown by the colour. Because so much nitrogen
is needed to make chlorophyl, a shortage will be noticed here first. The plant will become
failingly light green. This fading starts first with the older leaves. BUT: when there is
insufficient light it is of no use for the plant to make chlorophyl which also gives this light
green colour. When this is the cause however, the leaves also tend to "reach out for the
light" in their shape. With a nitrogen shortage you don't see this. Also with a nitrogen
shortage the plant becomes more susceptible to mycosis. With too much nitrogen the
opposite will happen. The plant becomes unnaturally dark green and the growth
stagnates.


PHOSPHORUS (P)
Just like nitrogen, phosphorus is important for protein chemistry of the plant, especially
in the regulation processes. A shortage of it is expressed as slow growth and sometimes
a purple-ish colouring of the whole leaf. The chance of a phosphorus shortage is small
with the right nutrition. An excess is more likely to occur, especially with substrate
cultivation, because phosphorus can accumulate in the root environment. When this
happens the plant can't absorb enough zinc so the symptoms are similar as with a lack of
zinc (see Zn).


POTASSIUM (K)
This nutrient is especially important in the humidity regulation. With a potassium
deficiency, symptoms of burning occur. (see page 10). With too much potassium there will
be a shortage of calcium and magnesium. (see Ca and Mg). During the flower period the
plant requires more potassium.


MAGNESIUM (Mg)
Magnesium is necessary for the production of chlorophyl. With a deficiency the plant will
yellow between the veins, initially in the older (strange enough not in the very oldest)
leaves. Your "favorite plant" is a true magnesium lover. Too much would make the
growth stagnate, but this has never been established with the cultivation.


CALCIUM (Ca)
This nutrient is "built-in" the cell walls and membranes of the plant cells. A shortage
might occur in the leaves when the relative humidity is too high (and they cannot
evaporate enough water), and with a potassium overdose. With a lack of calcium, the
young leaves and new buds die. The plant also becomes very susceptible to mycosis. If
the calcium deficiency is being caused by a too high humidity, the entire crop can be
ruined in no time through molding. An overdose of calcium has never been established
with this plant.
SULPHUR (S)
The plant uses sulphur to build up proteins. Overdoses or deficiency are unknown in
practice.


IRON (Fe)
The plant uses iron in its enzymes. When growing on soil, both overdose and deficiencies
are unknown. When growing on rockwool however, an iron deficiency might occur as a
consequence of a too high pH.

An iron deficiency is easily recognized by the chlorosis of leaf tissue on the growing
shoots. Leaves in the shoots have a network of green veins which stand out among the
yellow or white tissue between the veins.


MANGANESE (Mn)
The plant also uses this in its enzymes. Deficiencies and overdoses are both unknown
when growing on soil. A lack might occur when growing on rockwool because of a too high
pH. This is recognized by a yellowing between the veins of the new leaves (but not the
very newest).


COPPER (Cu)
Copper deficiencies are extremely rare. Be careful not to confuse this deficiency with the
symptoms of overfertilization.


ZINC (Zn)
Zinc is also used in the enzymes. A zinc deficiency is usually the result of an overdose of
phosphorus. The symptoms are chlorosis of tissue between the veins of top shoots
starting at the base of the leaf. A radial or horizontal twisting of the leaf blades in the
growing shoots is a dead give away.


BORON (B)
The plant needs boron to transport sugars. When there is a deficiency symptoms first
appear on the growing shoots which turn brown or grey and die. The shoots may look
burnt. A good indication of B deficiency is that after the top shoot dies, actively growing
side shoots start to grow but die also.


MOLYBDENUM (Mb)
This nutrient is needed for a few important enzymes in the plant that play a role in the
manufacture of nitrogen. Extremely rare, look for another cause.


IMPORTANT !!!
One of the things you never find in other manuals is the following: We have told you
before that the absorption of nutrients is an active process and that plants can, within
certain limits, decide what and how much they absorb with their roots. Suppose that a
nutrient solution contains nutrient A and nutrient B in equal amounts. The plant grows
fine but it happens to use some more of A than of B. After some time the EC has dropped
and is adjusted with new nutrients that again contain equal amounts of A and B. But more
has been used of A, so after adjusting, the solution contains more of B than of A. If this
continues for a while the solution will contain too much of B and too little of A whereas
the EC has the right value. With the EC you determine the concentration of nutrients but
not WHICH nutrients. Besides, the plant also expels certain toxins through the roots into
the drainage water. For these reasons we strongly advise you not to use the drainage water a second time.

MARIJUANA VEGETATIVE GROWTH

Once sprouted, the plant starts vegetative growth. This means the plant will be
photosynthesizing as much as possible to grow tall and start many grow tips at
each pair of leaves. A grow tip is the part that can be cloned and propagated
asexually. They are located at the top of the plant, and every major internode. If
you "top" the plant, it then has two grow tips at the top. If you top each of
these, you will have 4 grow tips at the top of the plant. (Since it takes time for
the plant to heal and recover, it is usually faster to grow 4 smaller plants and not top them at all.)
All plants have a vegetative stage where they are growing as fast as possible
after the plant first germinates from seed. It is possible to grow plants with no
dark period, and increase the speed at which they grow by 15-30. Plants can be
grown vegetatively indefinitely. It is up to the gardener to decide when to force
the plant to flower. A plant can grow from 12" to 12' before being forced to
flower, so there is a lot of latitude here for each gardener to manage the garden
based on goals and space available.
A solution of 20-20-20 with trace minerals is used for both hydroponic and soil
gardening when growing continuously under lights. Miracle Grow Patio or
RapidGrow plant food is good for this. A high P plant food such as Peter's 5-50-17
food is used for blooming and fruiting plants when beginning 12 hour days. Epsom
salts (1 tsp.) should be used in the solution for magnesium and sulfur minerals.
Trace minerals are needed too, if your food does not include them. Miracle Grow
Patio includes these trace elements, and is highly recommended.
Keep lights on continuously for sprouts, since they require no darkness period like
older plants. You will not need a timer unless you want to keep the lamps off
during a certain time each day. Try to light the plants for 18 or more hours, or
continuously at this point. Later, if you want to mature the plants indoors, you
will need to cut back light to 12-13 hours with strict, regular uninterrupted
darkness to get plants to produce flowers.
Bend a young plant's stem back and forth to force it to be very thick and strong.
Spindly stems can not support heavy flowering growth. An internal oscillating fan
will reduce humidity on the leave's stomata and improve the stem strength as well.


HYDROPONIC VEGETATIVE SOLUTION, per gallon
Miracle Grow Patio (contains trace elements) _ teaspoon
Epsom salts 1 teaspoon
Lime (if not added to medium) 1 teaspoon
Human Urine 1/4 cup
Oxygen Plus Plant Food (OPTIONAL) 1 teaspoon

This mixture will insure your plants are getting all major and minor nutrients in
solution, and will also be treating your plants with oxygen for good root growth,
and potassium nitrate for good burning qualities. Another good growth phase mix
is 1/4 tsp. Peter's 20/20/20 fertilizer per gallon of water, with trace elements and
oxygen added.


MARIJUANA FLOWERING
The plant will be induced to fruit or flower with dark cycles of 11-13 hours that
simulate the oncoming winter in the fall as the days grow shorter. As a
consequence, it works out well indoors to have two separate areas; one that is
used for the initial vegetative state and one that is used for flowering and fruiting.
There is no other requirement other than to keep the dark cycle for flowering very
dark with no light interruptions, as this can stall flowering by days or weeks.
Once a plant is big enough to mature (18"-18 feet), dark periods are required for
most plants to flower and bear fruit. This will require putting the lamp on a timer,
to create regular and strict dark periods of uninterrupted light.
Give flowering plants high P plant food and keep them on a strict light regimen of
12 hours, with no light, or no more than a full moon during the dark cycle. 13
hours light, 11 dark may increase flower size while still allowing the plant to go
into the flowering mode. Use less light, longer dark periods to speed maturity
toward the end of the flowering cycle.
Two shelves can be used, one identical to the other, if strictly indoor gardening is
desired. One shelf's lights are set for 12-13 hours, and one is lit continuously.
Plants are started in continuous light, and are moved to the other shelf to flower
to maturity after several weeks. This flowering shelf should be bigger than the
"starting" or "vegetative" shelf, so that it can accommodate larger plants. Or,
some plants can be taken outside if there is not enough space on the flowering
shelf for all of them near harvesting.
A light tight curtain can be made from black vinyl, or other opaque material, with
a reflective material on the other side to reflect light back to the plants. This
curtain can be tied with cord when rolled up to work on the garden, and can be
velcroed down in place to make sure no light leaks in or out. If the shelf is placed
up high, it will not be very noticeable, and will fit in any room. Visitors will never
notice it unless you point it out to them, since it is above eye level, and no light
is being emitted from it.
Flowering plants like very high P level foods, such as 5-50-17, but 10-20-10
should be adequate. Nutrients should be provided with each watering when first flowering.
Trace elements are necessary too; try to find foods that include these, so you
don't have to use a separate trace element food too.


HYDROPONIC FLOWERING SOLUTION per gallon
_ strength high P plant food, such as 4-12-6, or 5-50-17, etc.
1 tsp. Epsom salts
1 tsp. lime (if not part of the medium)
1 tsp. Oxygen Plus Plant Food (Optional)
_ tsp. Trace Element food

I cannot stress enough that during the flowering phase, the dark period should
not be violated by normal light. It delays flower development due to hormones in
the plant that react to light. If you must work on the plants during this time, allow
only as much light as a very pale moon can provide for less than 5 minutes. Keep
pruning to a minimum during the entire flowering phase. Bring the dark period down
to 10 or 8 hours to hasten maturity after flowering for 4-6 weeks.
A green light can be used to work on the garden during the dark period with no
negative reactions from the plants. These are sold as nursery safety lights, but
any green bulb should be OK.
Flowering plants should not be sprayed often as this will promote mold and rot.
Keep humidity levels down indoors when flowering, as this is the most delicate
time for the plants in this regard.
Early flowering is noticed 2-3 weeks after turning back the lights to 12 hour days.
Look for 2 white hairs emerging from a small bulbous area at every internode. This
is the easiest way to verify females early on. You can not tell a male from a
female by height, or bushiness.
4-6 weeks after turning back the lights, your plants will be covered with these
white pistils emerging from every growtip on the plant. It will literally be covered
with them. These are the mature flowers, as they continue to grow and cover the
plant. Some plants will do this indefinitely until the lights are turned back yet
again. At the point you feel you're ready to see the existing flowers become ripe
(you feel the plant has enough flowers), turn the lights back to 8-10 hours. Now
the plant will start to ripen quickly, and should be ready to harvest in 2-3 weeks.
Look for the white hairs to turn red, orange or brown, and the false seed pods (
you did pull the males, right?) to swell with resins. When most of the pistils have
turned color (~80%), the flowers are ripe to harvest.
Don't touch those buds! Touch only the large fan leaves if you want to inspect
the buds, as the THC will come off on your fingers and reduce the overall yield if
mishandled.


HYDROPONICS
Most growers report that a hydroponic system will grow plants faster than a soil
medium, given the same genetics and environmental conditions. This may be due
to closer attention and more control of nutrients, and more access to oxygen.
The plants can breath easier, and therefor, take less time to grow. One report has
it that plants started in soil matured after hydroponic plants started 2 weeks later!
Fast growth allows for earlier maturation and shorter total growing time per crop.
Also, with soil mixtures, plant growth tends to slow when the plants become
root-bound. Hydroponics provides even, rapid growth with no pauses for
transplant shock and eliminates the labor/materials of repotting.
By far the easiest hydroponic systems to use are the wick and reservoir systems.
These are referred to as Passive Hydroponic methods, because they require no
water distribution system on an active scale (pump, drain, flow meter and path).
The basis of these systems is that water will wick to where you want it if the
medium and conditions are correct.
The wick system is more involved than the reservoir system, since the wicks must
be cut and placed in the pots, correct holes must be cut in the pots, and a
spacer must be created to place the plants up above the water reservoir below.
This can be as simple as two buckets, one fit inside the other, or a kiddie pool
with bricks in it that the pots rest on, elevating them out of the nutrient solution.
I find the wick setup to be more work than the reservoir system. Initial setup is a
pain with wicks, and the plants sit higher in the room, taking up precious vertical
space. The base the pot sits on may not be very stable compared to a reservoir
system, and a knocked over plant will never be the same as an untouched plant,
due to stress and shock in recovery.
The reservoir system needs only a good medium suited to the task, and a pan to
sit a pot in. The pots are filled with lava/vermiculite mix of 4 to 1. This medium will
store water, but has excellent drainage and air storage capacity as well. It is also
reusable to the extent it can be recaptured from harvested plants. Use small size
lava, 3/8" pea size, and rinse the dust off it first. Wet the vermiculite (dangerous
dry, wear a mask) and mix into pots. Square pots hold more than round.
Vermiculite will settle to bottom after repeated watering from the top, so only
water from the top occasionally to leach, and put more vermiculite on the top than the bottom.
The pan is filled with 1 _ - 3 inches of water and allowed to recede between
waterings. Every two weeks the plants are watered with no nutrients from the top
to leach out mineral deposits. If you go away, reservoirs made of 2 liter soda
bottles inverted into a container to fit, and hosed over to the pans with a water
level mark and position similar to a pet watering dispenser can be made to keep
the plants watered for 2-3 weeks at least.
One really great hydroponic medium is floral foam. Stick lots of holes into it to
open it up a little, and start plants/clones in it, moving the cube of foam to
lava/perlite later for larger growth stages. Foam rubber, or most types of porous
foam, as well as rockwool will be good for this as well. Many prefer floral foam, as
it is inert, and adds no PH factors. It's also pretty cheap if you buy the generic brands.
Planting can be made easier with hydroponic mediums that require little setup
such as rockwool. Rockwool cubes can be reused several times, and are premade
to use for hydroponics. Some advantages of rockwool are that it is impossible to
over water and there is no transplanting. Just place the plant's cube on top of a
larger rockwool cube and enjoy your extra leisure time.
Some find it best to save money by not buying rockwool and spending time
planting in soil or hydroponic mediums such as vermiculite/lava mix. Pearlite is
nice, since it is so light. Pearlite can be used instead of or in addition to lava,
which must be rinsed and is much heavier.
But rockwool has many advantages that are not appreciated until you spend
hours repotting; take a second look. It is not very expensive, and it is reusable.
It's more stable than floral foam, which crunches and powders easily. Rockwool
holds 10 times more water than soil, yet is impossible to over-water, because it
always retains a high percentage of air. Best of all, there is no transplanting; just
place a starter cube into a rockwool grow cube, and when the plant gets very
large, place that cube on a rockwool slab. Since rockwool is easily reused over
and over (with sterilization), the cost is divided by 3 or 4 crops, and ends up
costing no more than vermiculite and lava, which is much more difficult to reclaim,
sterilize and reuse (repot) when compared to rockwool. Vermiculite is also very
dangerous when dry, and ends up getting in the carpet and into the air when you
touch it (even wet), since it dries on the fingers and becomes airborne.
Rockwool's disadvantages are relatively few. It is alkaline PH, so you must use
something in the nutrient solution to make it acidic (5.5) so that it brings the
rockwool down from 7.7, to 6.5 (vinegar works great.) And it is irritating to the
skin when dry, but is not a problem when wet.
Hydroponics should be used indoors or in greenhouses to speed the growth of
plants, so you have more bud in less time. Hydroponics allows you to water the
plants daily, and this will speed growth. The main difference between hydroponics
and soil growing is that the hydroponic soil or "medium" is made to dry quickly, and
drain well so that there are no over-watering problems associated with continuous
watering. Also, hydroponically grown plants do not derive nutrients from soil, but
from the solution used to water the plants.
Hydroponics allows you to use smaller containers for the same given size plant,
when compared to growing in soil. A 3/4 gallon pot can easily take a small 3'
hydroponically grown plant to maturity. This would be difficult to do in soil, since
nutrients are soon used up and roots become cut-off from oxygen as they
become root-bound in soil. This problem does not seem to occur nearly as quickly
for hydroponic plants, since the roots can still take up nutrients from the constant
solution feedings, and the medium passes on oxygen much more readily when the
roots become bound in the small container.
Plant food is administered with most waterings, and allows the gardener to strictly
control what nutrients are available to the plants at the different stages of plant growth.
Passive hydroponics is easy with a reservoir system. Only a pot filled with the
correct low-moisture medium and a water tray to sit it in are needed. No pumps,
hoses or other apparatus is required. The pot is placed in the pan, and watered
from the top or directly into the pan. Holes in the bottom and side near the
bottom of the pot allows water into the pot, and is wicked up to the roots by the
vermiculite. A pot filled with lava and vermiculite should be moist at the top after
water is added to the pan. Kitty litter pans can be purchased at five and dime
stores on sale for as little as $1 each, and make great water pans. 12-16
cut-down paper milk cartons will fit in each pan. A small closet can easily hold a
hundred plants at a time when starting, and can hold 12-48 for harvesting.
Watering can be automated to some degree with simple and cheap drip system
apparatus, so take advantage of this when possible. Hydroponics will hasten
growing time, so it takes less time to harvest after planting. It makes sense to
use simple passive hydroponic techniques when possible. Hydroponics may not be
desirable if you're growing outdoors, unless you have a greenhouse.
CAUTION: it is necessary keep close watch of plants to be sure they are never
allowed to dry too much when growing hydroponically, or roots will be damaged. If
you will not be able to tend to the garden every day, be sure the pans are filled
enough to last until next time you return, or you can easily lose your crop. Plants
in soil are much easier to care for in this respect, since moisture storage crystals
can be added to the soil to buffer water for long periods between watering. If you
need to, it is possible to automatically regulate the water level in hydroponic pans
by toilet bowl float in a master reservoir, or using a gurgle bottle that holds water
and adds it as the level recedes, like a pet watering bottle used for dogs and
cats. Also, a pump can be put on a timer to add water to the pans.
If you're watering every day hydroponically, you may be able to water twice a
day if you increase ventilation and make sure the plants don't build up too much
humidity. You can water more often (and thus increase plant growth) if you have
slightly warmer temperatures, less water retention in your medium, and better
drainage, or all of the above. What counts is that you're watering more often, but
still allowing the medium to dry between waterings.
Change the solution every month if you're circulating it with a pump, but the
reservoir system does away with this problem. Just rinse the medium once a
month or so to prevent salts build up. Change plant foods often to avoid
deficiencies in the plants. I recommend using 2 different plant foods for each
phase of growth, or 4 foods total, to lessen chances of any type of deficiency.
Change the solution more often if you notice the PH is going down quickly (too
acid). Due to cationic exchange, solution will tend to get too acid over time, and
this will cause nutrients to become unavailable to the plants. Check PH every time
you water.
Watch out for alga and higher humidities in hydroponics when watering plants. A
layer of gravel at the top of the pot may help, since it will dry very quickly. Make
sure you're not over-watering the plants. Allow them to almost dry out after each
watering.

When the first signs of flowering are visible, you can the change over to a flower nutrient.
The EC can also be increased to approx. 2.2. Increase the EC by 0.1 per day.
The pH remains at 5.8. It is advisable to occasionally (e.g. every one or two weeks) flush
the slabs through with clean tap water. This prevents the buildup of harmful salts. Adjust this tapwater with pH up or down to the normal pH-level of 5.8. It is advisable, from now upto and including the last day, that regular checks of all the values are carried out. For example, the drainage water gives us a good indication of the needs of the
plant. Therefore, frequently measure the amount, its pH and EC-values. If necessary increase the time of watering periods. In order to obtain an accurate measurement in the slab, you are best off using a 140ml syringe. Remove the water sample from the slab where the roots are. For taking water samples use a large syringe with a 0.5mm stainless steel needle. The optimal pH in the slab is around 6.0. This may not vary more than 0.5pH. (e.g. 5.5-6.5). The EC in the slab may be a max. of 0.5 higher then in the nutrient reservoir. The week before harvesting, stop with all nutrients, and only give tap water, without pH correction. This forces the plant to use up all its nutrients-reserves, this considerably improves the sweetness and taste.


ANSWERS TO COMMON QUESTIONS

THE WHY'S GUY: QUESTIONS OVER THE COUNTER

WHY SHOULD I WATER MY CROPS AT THE START OF MY LIGHT
CYCLE?

- Water demand by crops is greatest during the light cycle.
- Unless there is a plentiful supply of water, the plant cannot take up CO2 - the
breathing pores will close.
- Watering at end of the light cycle, or in darkness, creates high humidity levels in
the garden. This can encourage disease or pest problems to gain a foothold in the
garden.

WHY SHOULD THE WATER BE ROOM TEMPERATURE?

- Cold water causes slow growth.
- Hot water damages roots. This reduces the ability of the plant to take up food and
water - and diseases may attack the damaged roots, invading the plant. Even very
warm solutions of water and fertilizer can damage roots, especially if the nutrient
solution is strong (over 1000 PPM).

WHY CAN'T I FERTILIZE A DRY PLANT?

- The fertilizer solution can cause root damage to dry roots, even if it is mixed at
normal strength. Water a dry plant well (with plain water) an hour before fertilizing.


WHY CAN'T I USE OUTDOOR FERTILIZERS INDOORS?

- Outdoor fertilizers can contain high levels of a nitrogen source called ammonia -
this is too active a form of nitrogen for hydroponics crops in containers. In an
outdoor garden, armies of bacteria in the soil quickly break down ammonia
nitrogen into nitrates - a milder form of nitrogen - for plant uptake and use.
Outdoor fertilizers often contain only three of the eleven required nutrients that
plants use. Gardeners hope the outdoor soil can supply these missing elements.
Hydroponic foods contain all the required minerals for best plant growth and crop
yield.

WHY IS pH IMPORTANT?

- pH affects availability of nutrients - if the root zone is very acidic or alkaline,
some minerals will bond together and become unavailable to the roots.

WHY IS ADDING AIR TO NUTRIENT SOLUTIONS IMPORTANT?

- Well-aerated nutrient solutions allow roots to take up fertilizers easier and faster.
- Adding air to water or nutrient solutions reduces disease problems. Hydrogen
peroxide can be added to water to actually kill diseases, using the oxygen that
peroxide releases into the water to destroy disease cells.

HOW DO I DECIDE ON THE STRENGTH OF MY FERTILIZER SOLUTION?

- The first time you use any new fertilizer, mix it only half-strength.
- Mixing instructions on a fertilizer assume plants are healthy, free of pests and
diseases and actively growing in full sun, with lots of fresh air, and with moderate
temperatures (about 30 degrees C). If all these conditions are in place, plants can
use full-strength nutrient mixes.
- If plants have disease or pest problems, poor air movement, bad light, or very
high (or low) temperatures, use only half-strength fertilizers while you correct the
problem.
- For fast-growing crop plants with excellent growing conditions, the use of
additional CO2 and growth hormones ("Growth Plus") can create situations where
plants might be able to make use of stronger fertilizer solutions than the
manufacturer's recommended mixing rate. Always use a food strength meter to be
sure that gradual increases in nutrient concentrations allow plants to adapt to
stronger food levels. If you decide to try increasing your food strength, do it
gradually, by 200 PPM increases, allowing two or three days between increases.
Keep a close watch on crops to spot signs of nutrient stress of damage. Flush roots
well with plain water (or water/powerthrive solution) and reduce food strength if our
plants show signs of over-feeding.
- During periods of slow growth, reduce strength of fertilizers.

WHAT'S FERTILIZER BUILD-UP? HOW CAN I AVOID IT?

- "Fertilizer build-up" refers to situations when foods accumulate near the roots,
burning them and stressing the plant. Some grow mediums - the soilless mixes -
tend to hold fertilizers and need different treatment than hydrocorn or rockwool
crops to avoid build-up of fertilizers in the potting mix. Feed plants in potting soils
once, then use plain water the next time - by alternating feeding and watering, we
avoid fertilizer build-up, since water re-dissolves the food that was held by the
potting soil, making it available again to the roots.
- In hot weather, feed crops in potting soils once, then water twice as needed before
the next feeding.

MY CROP IS GROWING IN SUNSHINE MIX AND NURSERY POTS, WHEN SHOULD I TRANSPLANT? WHY?

- Roots spread through potting soil until they reach the container. Then the roots
wind around the inside of the flower pot, forming a web around the outside of the potting soil.
- Root bound plants need re-potting. Sure signs of root bound conditions are:
Soil dries very quickly between waterings.
Soil shrinks away from containers, leaving an air gap between the soil and the nursery pot
Soil "collapses", forming a bowl-shaped surface, often with a crust.
- Re-pot before signs of root bound conditions occur.
- Remove container from soil occasionally to check on root conditions
- Re-pot plants when roots have reached the outer surface of the potting soil and
are just starting to wind around the inside of the container. Roots spread easier
into the new soil. Plants with thick, winding roots spread slowly into large
containers, and the web of roots can interfere with water movement through the
potting soil. Your new soil could be moist, but the inner core of soil will stay dry,
causing plant stress.
- Re-pot to final pot size at least two weeks before starting flowering or crop
production stage.

WHEN SHOULD I USE "GROWTH PLUS"?

- After transplanting to larger containers
- During periods of active growth (green growth, flowering, crop production).
- Use every 10 - 14 days.
- Mixing rage: one capful / one liter (foliar spray)
OR one capful / five liters (root soak)

WHEN SHOULD I NOT USE "GROWTH PLUS"?

- When crops are "shifting gears" - changing into a new growth stage:
- plants adjusting to higher light levels (new transplants). Plants changing from
green growth to flowering cycle, especially with reduced day length. (See "Shifting
Gears" information sheet for more hints on getting through this period of change.)
- During high-temperature periods, or when crops have disease or pest problems.
- When plants are growing in low light level conditions.
- During the final two weeks of crop production, as growth slows.

WHEN SHOULD I USE "POWER THRIVE"?

- For new cuttings and seedlings:
To pre-moisten grow mediums
To "water in" new cuttings and seedlings.
For misting and watering cuttings and seedlings until established.
- For fast recovery from stress:
Plants recovering from disease or pest problems
Plants recovering from heat or water stress

HOW CLOSE SHOULD MY LAMP BE TO MY CROP?

- The closest minimum distance between lamps and crops is determined by
temperature, since plants grow best at 30 degrees C = 85 degrees F. Since heat
levels will vary from one garden to the next, the minimum distance in your garden
may be different from another garden with different light levels, air movement, etc.
To find the minimum (closest) distance for your garden:
- Use a small thermometer, mounted at the top of your plants.
- When the thermometer gives a continuous reading of 30 degrees C, the lamp is at
its closest possible position to the crop - note this distance so you'll remember to
keep moving the reflector up as crops grow, to keep the best temperature for your plants.
- Once you have learned how close you can safely have the lamp from your crop,
move lamp away from the crop until all plants are well-lit.
- Fix the lamp into this position. Maintain at least the minimum distance from the
crop by moving the lamp higher as plants grow taller.
- High temperatures cause SLOW growth and STRESS plants!

READY FOR A RIDDLE?

Ready for a riddle? O.K., What's invisible, feeds your plants, fights off bugs,
brushes off disease, helps your crop bring food and water up from the roots, keeps
garden temperatures just right, and hauls away excess water? It has no batteries,
no mechanical parts, and you'll never run out of it!
Of course we're talking about air! It's the most versatile, yet unappreciated,
worker in the garden. When gardeners understand how many chores a little air can
do, they can put it to better use to make their gardens healthier and more
productive.
Let's start with air "feeding" plants. Everyone knows that plants grow from
fertilizers, right? Guess again! Almost HALF the dry weight of plants is carbon,
taken from air! Another 42% of your plants is oxygen! All those fertilizers you've
been mixing and feeding to your corps? They only make up about 2% of your
crop's dry weight! Considering air only has 300-400 parts per million of carbon
dioxide (0.03%), we can concluded two things: plants are pretty good at grabbing
CO2 from the air, and they can use all the fresh air they can get!
Air is your greatest ally in the war against bugs and disease! Moving air can blow
insects off your crops, and interfere with their meal-times. Who can eat in a
hurricane? Air movement also lays havoc with egg-laying and the growth of baby
bugs in your garden. Bugs want still, moist air - and if they can't get it in your
garden, they'll go somewhere else! This is one good reason why we emphasize
good spacing between plants, oscillating fans, an air intake source and good
exhaust fans. Let someone else get the bug problem!
Air movement through the garden helps keep diseases in check, by keeping
humidity levels from climbing to unhealthy levels. Diseases multiply quickly in still,
moist air, and use any water on the leaf as an entry point to damage leaves. If you
can run ALL your fans 24 hours a day (without chilling your garden) you'll help
your plants stay healthy and disease-free.
Air fights disease in the root zone, too. The worst diseases need waterlogged
conditions to multiply and attack roots - air is their poison! (talk about a safe,
cheap fungicide!) Want to keep roots - and plants - healthy? Don't overwater, and
let air work for you in the root zone.
How can air make crops take up water and food faster and better? In two ways:
first, air in the root zone means healthy, growing roots eater to work hard supplying
the top growth with food and water. Second, good air movement through plants
draws lots of food and water up from the roots. How? To understand this, you'll
want to meet the STOMA, a tiny breathing pore on the underside of a leaf. This
stoma's a busy place - a sort of grand central station of the plant world. Carbon
dioxide and oxygen are coming and going through this tiny opening, and this is
where water vapor drifts out of the leaf into the air. Lots of water vapor - if your
crops used 100 gallons of water and food mix last week, they "transpired" 99
gallons of water out of this breathing pore, keeping only one gallon for actual
growth! It sounds wasteful, doesn't it? But plants have a purpose in handling all
this water: as a drop of water evaporates and drifts out of the leaf, it yanks another
drop of food and water into the roots. In this way, plants suck water and food into
the roots and draw them up the stem to the leaves, concentrating the minerals from
the fertilizer mix in the leaves for use by the plant. Evaporation of the excess water
also cools the leaf, keeping it at an efficient working temperature. Another
important use of this water movement: it keeps air spaces in the leaves moist so
CO2 can dissolve into the damp air - a necessary first step for uptake and use of
CO2 by the plant. When we supply good air movement through the garden, we help
to speed everything up - CO2 uptake, food and water movement into the plant,
utilization of minerals by the leaves - in other words, we speed up GROWTH!
Air isn't a riddle any more - put it to work for you and your garden, and it will prove
its usefulness to the health and yield of your crops.



Creating Good Growing Conditions in the Garden
Temperature

If plants could be fussy about one main growing condition, it would be
temperature. Aside from drying out the roots completely (not
recommended unless you enjoy funerals !) the quickest way to create
problems in your greenhouse is to mess with your plant's temperature.
The bad news is : Letting the thermometer climb - or - drop by only a
few degrees can make plants clench up and stop growing.
The good news is : We know what they like.
Here is a list of recommended temperatures for different stage of
growth in the garden.
Please note: The listed temperatures refers to TEMPERATURE AT
THE TOP OF THE TOP OF PLANT not the floor , wall, or outside!
Use a small thermometer on a bamboo stake for accuracy!
SEEDLINGS AND CUTTINGS 21 C (70 F) Day and night
GREEN GROWTH 30 c (85 F) days 18-21 C (65-70 F) Nights
FLOWERING AND CROP PRODUCTION 27 C (80F) Day
15-18C(60-65F) Nights
ROOTS (Green Growth and Crop Production) 21C (70F)

Hydrogen Peroxide

Do you know how to use it?

Most distributors of 35% food grade Hydrogen Peroxide recommend using 3-5 mls
per gallon of solution. Here is what they don't tell you, they do not know how it
works in hydroponic situations and how it relates to nutrient solutions and delicate
root hairs.

When Hydrogen Peroxide is added to water it creates a certain level of Ozone,
Ozone will, having the opportunity, react with any organic compounds that are
present and this is called oxidation. Hydrogen Peroxide is water with an extra
oxygen molecule causing it to be unstable and when you add it to water H202 +
H20 = H403, the 03 in the equation is ozone and requires oxidation to break it
down into 02 which is stable.

The directions for use in hydroponics is 1 ml per gallon of water without nutrient
present in the water, if you add Hydrogen Peroxide to your nutrient solution then
you run the risk of the ozone reacting with the mineral salts allowing them to fall
out of solution. Do not use more than this because it may break down the outer
layer of the root hair making it susceptible to root disease which is in many cases
the very reason you are using it. When used properly it will enhance your oxygen
content of your solution. Another thing I need to mention is that when you add
Hydrogen Peroxide to your water let it stand for _ hour. before you add your
nutrient so as not to get any reaction.

1ml per gallon
let stand _ hour
add only to water.

Fungus Gnats

This question deals with a successful grower who's created a productive garden with good growing conditions, so many potential causes of the problem (overheating, crowding, mites) can be eliminated. He's already had these problems and corrected them! Even experienced gardeners can be puzzled by fungus gnat symptoms. The larvae of these pests can destroy a garden, working out of sight as they chew the plant roots and drain the sap. Even the adults - tiny flies that hang around the bottom of the plant and run across the surface of the grow medium look harmless. Usually, growersonly see a few tiny flies, and sometimes the flies lay their eggs near the plant's roots and escape unnoticed by the gardener. This hidden activity by fungus gnat larvae separates gnats from topgrowth -attacking insects like thrips or spider mites. Even careful examination of the root zone may miss these tiny larvae - the grower would see only damaged and discolored roots. Meanwhile, the baby bugs are: Chewing and damaging root t issue, interfering with nutrient and water uptake. Sucking sap from roots that was necessary for the needs of the plant. -Infecting the damaged roots with fungus disease. This last activity is the reason these insects got their name - they carry disease spores on their bodies that can infect the damaged roots easily, creating more problems for the grower. New fungus gnat problems in a garden usually occur in autumn (as cooler weather forces insects indoors) or spring (when over-wintering eggs outdoors hatch and the flies find their way into the grow room). Continuing fungus gnat problems can happen anytime of the year, indicating that an infected plant somewhere in the garden or nearby (house plants, or outdoors near the indoor garden) is serving as a continual source of these pests. Often the problem is traced to stock plants, which are usually neglected, old, and rootbound. And good riddance! Because of the severe damage these pests can inflict on a garden, store staff and growers must be aware of how to i dentify and handle them. Bright yellow leaves - normally shaped, no wrinkles or spots - and very slow growth are strong clues to their presence in the garden. Have growers search for "tiny flies - like fruitflies" hovering near the base of the plant or on the grow medium. Once spotted, urge immediate treatment of all plants, not just the ones that look sick - the larvae can already be present and start to damage plants that still look healthy, and untreated larvae turn into more flies to re-infect the garden. Plants recovering from fungus gnat problems still face the risk of disease problems - remember that these bugs can spread fungus spores to damaged roots. As a precaution, these plants should be given a treatment with a fungicide a day or two after pesticide application. A root drench is more effective than spraying the top growth. Follow a similar procedure to your use of pesticides, drenching the entire root zone with fungicidesolution, with irrigation pumps off for at least several hours. Lef t over fungicide in the root zone will not interfere with nutrients, so it's not necessary to drain and replace the fertilizer mix. Yellow sticky cards are very useful as an early warning system for these flying pests, since the gnats are often attracted to the bright yellow surface. Soon, new gangs of these bugs will be pulling "home invasions" on our gardeners as the milder weather will allow gnat eggs to hatch out of doors. Fortunately, treating this pest is very straight forward: Wilson's Potting Soil Insecticide or Wilson's Fungus Gnat Powder will eliminate fungus gnats from the root zone, usually with a single application of pesticide. These products are very gentle on the plant, making them useful for all grow mediums. We do not recommend stronger, outdoor pesticides (liquid diazinon 5% strength) since these can cause major damage or death to an indoor garden! Stick with safe, effective products that allow plants to recover quickly. Using these products with "Potting Soil" plants is very simple: just sprinkle the powder on to the soil and water it in.


TYPES OF HYDROPONIC SYSTEMS
Various growing media can be used in hydroponic systems. However, any system
must have the following four qualities:

-sufficient support for the plants
-appropriate distribution of air, since roots
-need oxygen and respire other gasses, such
-as carbon dioxide
-maximum water availability for the plant roots
-accessible nutrient solution with consistent
-chemical characteristics

Liquid (non-aggregate) Hydroponic Systems

Deep Flow Marijuana Hydroponics

The classic hydroponic system, where plants are supported so that their roots hang into a nutrient solution, is generally called "deep flow hydroponics". This system is appropriate for hobbyists and large scale production of leafy vegetable crops. The system consists of horizontal, rectangular-shaped tanks lined with plastic. The nutrient solution is monitored, replenished, recalculated, and aerated. Commercial facilities are now quite popular in Japan. The rectangular pools act as frictionless conveyor belts where large, moveable floats of plants (lettuce) can be transported from transplant to harvest.

Nutrient Film Technique

A modification of the deep flow system is called "nutrient film technique", where a thin film of nutrient solution flows through plastic lined channels, which contain the plant roots. The walls of the channels are flexible; this permits them to be drawn together around the base of each plant, excluding light and preventing evaporation. For lettuce production, the plants are planted through holes in a flexible plastic material that covers each trough. Nutrient solution is pumped to the higher end of each channel and flows by gravity past the plant roots to catchment pipes and a sump. The solution is monitored for replenishment of salts and water before it is recycled. Capillary material in the channel prevents young plants from drying out, and the roots soon grow into atangled mat. This method is mainly used for tomatoes.

Aeroponics

Aeroponics is another technique, where nutrient solution is sprayed as a fine mist in sealed root chambers. The plants are grown in holes in panels of expanded polystyrene or other material. The plant roots are suspended in
midair beneath the panel and enclosed in a spraying box . The box is sealed so that the roots are in darkness (to inhibit algal growth) and in saturation humidity. A misting system sprays the nutrient solution over the roots periodically. The system is normally turned on for only a few seconds every 2-3 minutes. This is sufficient to keep
roots moist and the nutrient solution aerated. Systems were developed by Dr. Merle Jensen at the University of Arizona, for lettuce, spinach, and even tomatoes, although the latter was judged not to be economically viable. In fact, there are no known large-scale commercial aeroponic operations in the United States, although several small
companies market systems for home use.

Aggregate Cannabis Hydroponics

In aggregate hydroponic systems, a solid, inert medium provides support for the plants. As in liquid systems, the
nutrient solution is delivered directly to the plant roots. Aggregate systems may be either open or closed, depending
on whether surplus amounts of the solution are to be recovered and reused. Open systems do not recycle the nutrient
solutions; closed systems do.

In most open hydroponic systems, excess nutrient solution is recovered; however the
surplus is not recycled to the plants, but is disposed of in evaporation ponds or used
to irrigate adjacent landscape plantings or wind breaks. Because the nutrient solutions
are not recycled, such open systems are less sensitive to the composition of the
medium used or to the salinity of the water. These factors have generated
experiments with a wide range of growing media and the development of more
cost-efficient designs for containing them.

There are numerous types of media used in aggregate hydroponic systems. They include peat, vermiculite, or a combination of both, to which may be added polystyrene beads, small waste pieces of polystyrene beads, or perlite to reduce the total cost. Other media such as coconut coir, sand, sawdust, are also common in some regions of the world.

For growing row crops such as tomato, cucumber, and pepper, the two most popular
artificial growing media are rockwool and perlite. Both of these media can be used in
either closed or open systems (gravel is not recommended as an aggregate in either
system). Both media are lightweight when dry, easily handled and easier to
steam-sterilize than many other types of aggregate materials. Both can be
incorporated as a soil amendment after crops have been grown in it.

Rockwool, or stonewool, is produced from basalt rock, and can come as spun wool,
resembling fiberglass, or it can be granulated, offering an alternative to perlite and
vermiculite in terms of water holding capacity and aeration. Stonewool has a high pH,
generally greater than 8.0, however, it has essentially no buffering capacity, meaning it
will not affect the pH of the nutrient solution nor will it affect any other media it is mixed
with, such as peat moss (which has a pH of 3.8 to 4.5). Stonewool can be purchased
in prepackaged "slabs"(commonly 15 x 7.5 x 100 cm long), ready to use, or as bulk
granules for those growers who wish to mix their own soilless media.

Perlite is usually bagged in opaque white bags with drip irrigation tubes at each plant
and drainage slits in the bags. Perlite is an inert media providing excellent aeration
and water holding capacity. As in rockwool, it can be steam sterilized, rebagged and
reused several times.

When both perlite and rockwool are used as closed systems, great care must be
taken to avoid the buildup of toxic salts and to keep the system free of nematodes and
soilborn diseases. Once certain diseases are introduced, the infested nutrient solution
will contaminate the entire planting. In addition to the common practice of sterilizing
the recirculating solution, there is current research exploring the use of surfactants to
control certain root diseases. Such systems can be capital intensive because they
require leak proof growing beds as well as subgrade mechanical systems and nutrient
storage tanks.



LIGHTING
Understanding lighting can be very confusing for the beginner ... we are here to help
make it simple.Incandescent bulbs, like the one in your bedside lamp create light by passing electrical
current through a very fine wire. Resistance in the wire causes it to heat up and glow.
Flourescent tubes and low pressure sodium lamps pass electrical current through
gaseous vapour under low pressure. Flourescent tubes are very good for seedling and
cuttings. Flourescents can be kept very close to the leaf canopy without fear of scorching.
These can be raised as the plants grow. If your plants require medium-high, or high light
levels flourescents are not recommended.Low pressure sodium lamps and mercury vapour lamps are of little value in the case of indoor gardening. Restrict their use to illuminating parking lots.
High Intensity Discharge or H.I.D. lamps produce light by passing electrical current
through vaporized gas under high pressure. The different gases or materials contained in
the arc tube dictate the colors of the spectrum that the light will produce.

WHAT IS RIGHT FOR YOU?

When deciding upon what light source you want to use, you must consider the plants
needs. The blue-violet and red-orange segments of the visible light spectrum are the
most important for photosynthesis and chlorophyll production. Red-orange light will encourage flowering and stem elongation. Light strong in the blue-violet spectrum will keep plants short and bushy with short internodal space.
In combination the two will produce more balanced growth.Metal Halide or Multi Vapour H.I.D. lamps provide the most complete spectrum for plant growth from a single source in absence of actual sunlight. Metal Halide lamps
produce a decent amount of light energy in both the blue-violet and red- orange ends of
the spectrum but, leaning slightly towards blue-violet as the predominant area of spectral
energy. Metal Halides can be used for both vegetative and flowering stages.

A definite improvement upon the standard 'white' metal halide is the new Daylight Full
Spectrum bulb by Duraguard. This bulb illuminates a very definite blue spectrum
resulting in very healthy vegetative growth, with short internodal spacing. Since this bulb
has a balanced spectrum it would be a perfect bulb for a one lamp operation. Available in
both 400 and 1000 Watt.

High Pressure Sodium or HPS lamps produce light energy weighted toward the
red-orange area of the spectrum. Many growers use these lamps for all stages of
growth, unless natural sunlight is available we would only suggest their use during
flower initiation and development periods. There is a new strain of HPS bulbs that have
an augmented blue segment (30% or more) making them a worthwhile choice for all
growing periods.

For those who have metal halide systems and want to add or change to high pressure
sodium lamps for flowering, there are Retrofit High Pressure Sodium Lamps available
that are compatible with a metal halide ballast. The definite advantage that the retrofit
bulbs have over conventional H.P. S. bulbs, is that you can use metal halides for strong
vegetative growth as they are predominant in the blue-violet spectrum and high pressure
sodium lamps, which are high in the red- range spectrum for flowering. Available in both
360 and 940 Watt.

We hope this information will help you make an educated choice in purchasing your next
lighting system.


VENTILATION
Fresh air is key...

Fresh air is at the heart of all successful indoor gardens. In the great
outdoors, air is abundant and almost always fresh. The level of C02 in the
air over a field of rapidly growing vegetation could be only a third of normal
on a very still day. Soon the wind blows in fresh air. Rain cleanses the air from dust
and pollutants. The ecosystem is always moving. When plants are grown indoors
the natural balance that is present out of doors must be achieved indoors by way of
fresh air ventilation. You must take the task of bringing in fresh air seriously or
else your green thumb is going to wilt and turn brown.
Fresh air is inexpensive and easy to find. An exhaust fan is the main tool used to
satisfy this need.
In order to have a good flow of air through your growing environment,
adequate air circulation and ventilation are necessary. Indoors, fresh air is
one of the most commonly overlooked factors in contributing to a plentiful
harvest. Experienced gardeners realize the importance of fresh air and take care in
setting up proper air movement. Three factors affect air movement: stomata,
ventilation, and circulation.

STOMATA are microscopic pores which are located on the undersides of the
leaves. These stomata regulate the flow of gasses into and from the plant. These
can get clogged with dust, filmy residues, pollen etc... So it is very important to
have air movement to keep these pores clean and free.

CIRCULATION if the air is completely still, plants will tend to use all of the C02
next to the leaf surface. When this air is used and no fresh air is forced into its
place, dead air space forms stifling the stomata, slowing growth. Air also stratifies
with the warm air rising and the cooler air settling towards the bottom of the room..
All of these potential problems are avoided by opening a door or window and
installing oscillating fans. Air circulation is important for insect and fungus
prevention. Mold spores are present in all growrooms.

VENTILATION an average l0' x l0' foot vegetable garden will use from 10 to 30
gallons of water per week. Where does all this water go? It transpires and
evaporates into the air. So basically, gallons of water will be held in the air. If this
moisture is left in a small room, the leaves will get limp, transpiration will slow
(remember the flow of water through the plant helps keep it erect) and the stomata
will be stifled. This moisture mist be replaced with dry air that lets the stomata
function properly. A vent fan that pulls air out of the grow room will do the job.
Successful indoor gardeners know that a vent fan is as important as water, light,
heat, and fertilizer. In some instances it is more important. All greenhouses have
large ventilation fans. It is sometimes said that the person with the most fans wins.
Vent fans are rated by the number of cubic feet of air per minute (cfm) they
can replace or move. Buy a fan that will replace the volume (cubic feet) of
the grow room air in about 5 minutes or less. The air that is pulled out is
immediately replaced by fresh air which is drawn from little cracks under the doors
or window sills. If a grow room is sealed tightly then an intake fan will probably be
necessary to bring in fresh air.

A vent fan is able to pull air out of a room many times more efficiently that a fan is
able to push it out.

To calculate the room size multiply width by height this will give you the total cubic
footage of your room for example 10 by 10 by 8 = 800 cubic feet. Remember that
you want your fan to exchange the air within 5 minutes so for a room that is 800
cubic feet a fan that is capable of moving 160 cfm is needed.



ROCKET FUEL RECIPE
Our Recipe for plant 'Rocket Fuel'
In Order:

1 Liter of water at room temperature with a PH at 6.3 in a misting bottle.
Add 16 drops Hyper Oxygen. Hyper Oxygen is a 35% food grade Hydrogen Peroxide to remove
any chlorine and increase the level of oxygen availability in water, improving nutrient uptake, and
effective use in plants. Also destroys harmful bacteria and viruses.

Add 36 drops Agri 2. Agri 2 is an extremely effective wetting agent ensuring plant tissue
penetration especially when misting plants with waxy or hairy leaves. Also contains an antifoaming
agent.

30ml (lOz) Earth Food. Earth Food is a 2 part product, first being catalyst altered water, changing
the structure of molecules in water. Your water will now form attractions with free electrons,
helping better serve water's role as a transportation, cleansing and absorption mechanism within
your plants circulatory system. Second it contains activated Carbon, Amino Acid. organic trace
minerals and other desirable ingredients obtained from Lignite (the fossil remains of plants grown
50 million years ago).

5ml (3ml min. To 10 ml max.) Growth Plus. Growth Plus is the main ingredient and the best kept
secret in the industry. It is a very concentrated solution of natural growth hormones with cytokinin
being the main one. This product is dynamite just on its own.

30ml (15 ml min. To 60 mi max.) Sea Mix.
Sea Mix is a concentrated solution of sea plant (Ascopilyum nodosum) and Sea fish processed
together for effective foliage feeding of plants. Sea Mix feeds your plants with a healthy supply of
micronutrients from the sea plant and macronutrients (N-P-K) rich in sea fish.]

NOTE A: The above mix is then lightly misted covering the whole plant every 2 - 3
weeks and no more than once a week during active growth. Foliage feed before 11
:OOam or after 4:00pm. It is important to note that University studies show foliage
feeding to be about 10 times more efficient than dry fertilizers and nutrients are
immediately made available to the plant.
NOTE B: To use the above as watering solution dilute 3 to 4 times.
NOTE C: Only mix up enough to be used within 48 hours. Also 5ml is equal to 1 teaspoon.
NOTE D: All of the above products are of the highest quality and at the same
concentration as manufactured. Altering the above recipe is at your own risk.
Remember "more is not always better".


Insects, fungus, bacteria and more
TREATING FUNGUS AND BACTERIA IN THE GARDEN

SEEDLINGS AND NEWLY-ROOTED CUTTINGS
Treat with NO-DAMP or other mild fungicide.
Be sure roots are already wet before root-drench treatment: NO-DAMP contains alcohol that
could damage dry roots or unrooted cuttings.
Treat plants once a week until plants recover.
VIGOROUS PLANTS - GREEN GROWTH (no flowers or crop on plant)
Spray top-growth well with SAFER'S GARDEN FUNGICIDE
Wet all leaves until liquid runs off leaves.
- CAUTION: DO NOT SPRAY PLANTS WITH FLOWERS OR CROP ON THEM
- you will definitely BURN your crop!
Treat your plants once a week - best time to spray is late in the day, so the plants can dry in the
dark; avoid spraying in strong light.

FLOWERING OR CROP PLANTS

Treat plants by hand-watering BENOMYL fungicide into the roots.
- CAUTION; NEVER SPRAY A FLOWERING PLANT WITH FUNGICIDE - IT COULD
DAMAGE THE FLOWER OR CROP!
Water enough BENOMYL solution into the roots to DRENCH the entire root system.
Treat the plants when the roots are ALREADY WET from feeding or watering and when they
won't be watered again for at least a few hours.
Treat once a week.

HINTS ON TREATING PLANTS FOR DISEASE:

Avoid high temperature and strong fertilizers until plants recover.
Disease can become tolerant of a fungicide if used many times" after you have used one product 3
or 4 times in a row, switch to another suitable product and attack the disease with a new weapon.

- SAFER'S GARDEN FUNGICIDE is a sulphur-based product ONLY FOR SPRAYING
GREEN GROWTH" DO NOT USE SAFER'S GARDEN FUNGICIDE FOR CROP
PLANTS!

Pests
MITES
Spider Mites
Look for browning of foliage, sometimes accompanied by extensive webbing. Mite
damage occurs most often during hot, dry weather in July and August. Look for very small,
spider-like creatures that are almost invisible without magnification.

Use a hand lens of at least 10X magnification to examine undersides of leaves for the presence of
mites
Fungus Gnats
These flies are gray or black, delicate and about 3 to 6 mm long. The young are white maggots
with black heads, found in decaying plant matter. They thrive in moist soil. The adults are a
harmless nuisance, but the maggots can injure the roots. Affected plants appear stunted, and
foliage may drop.

Whiteflies
These small delicate, white insects suck the plant juices and are usually found on the underside of
leaves or fluttering about the plant. Leaf surfaces are covered with sticky honeydew excreted by
these insects. Leaves become pale or discoloured.

Thrips
Several species of thrips may infest house plants. Thrips are small, slender pests, the young being
whitish to yellow or orange and the adults brown or black. Adults are hard to see because they fly
about the plant, especially when disturbed. They feed by rasping the plant tissue and sucking the
juice, causing a silvery, speckled appearance to leaf surfaces. Dots of black excrements cover a
badly infested plant and small scars are formed where each female placed eggs in the plant tissue.



Light Energy for Plant Growth

Plant Development is dependent on the specific spectrums of the lightsource and the usable light energy
Only 37% of the energy in sunlight is within the wavelength (colors) useful for photosynthesis,
while 62.4% is infrared (thermal energy) and the remaining 0.6% is ultraviolet. Photosynthesis in
the plant leaf is powered by 1% of the sunlight that falls on the plant, 10% of the sunlight is
reflected and 10% passes through the leaf. The leaf will retain 80% which is used for transpiration.
Some of the light is re-radiated, while the fraction that remains is used for building food
from the carbon dioxide, minerals and water. For photosynthesis the most important spectrums of the light are blue and red. Germination, flowering and stem growth are influenced by red to far red. In artificial environments it is important to keep these factor in mind when programming the light source for the plants life cycle. For the
associated light spectrum consult your bulb's manufacturer. Useable light energy for plant growth is measured in Micro-Einsteins ( micro-mols ofphotons per meter squared per second). The sunlight reaching a plant is approximately 2,200 micro-einsteins on a cloud-less day and 170 micro-einsteins on a cloudy day.
For indoor growing under artificial lighting a range of 395 to 500 micro-einsteins is considered by
experts to be minimal for plant growth. Note: The higher the bulb wattage the further away the
plant must be from the light source to prevent the plant from transpiring too quickly. Thus, the
further the plant is from the light source the less available useable energy is delivered to the plant.
For optimum usable energy, select a bulb that has the lowest wattage with the highest usable
energy coefficient.

Feminised Cannabis Seeds by Dutch Passion Seed Company, Amsterdam In November 1998 we introduced our Female Cannabis Seed. We did this after our own experiments showed that from female seed, we acquired all but 100% female off-spring. In the mean time we are six months further. We have received a lot of feed-back from our customers. The reactions are mostly positive, clients who have successfully produced almost 100% female off-spring. However there have been reactions from customers who found a few hermaphrodites or male plants. Apparently environmental influences affect the sex of the female seeds as well. Because of the fact that Female seeds do not grow into female plants under all circumstances, we changed the name from Female Cannabis Seeds into Feminised Cannabis Seeds. From literature and from our own findings it appears that the growth of a male or a female plant from seed, except for the predispositioon in the gender chromosomes, also depends on various environmental factors. Not only the origination of entirely male or female plants is partly affected by these environmental factors, the number of male and female flowers on a hermaphrodite plant is afffected as well. The environmental factors that influence the sex of the plant (or the flower in the case of hermaphhrodites), are among other things: 1) the quantity of nitrogen and potassium of the seed bed, 2) humidity and moistness of the seed bed, 3) level of temperatures, 4) colour of the light used, 5) length of daylight. Stress, any form of stress, makes that more male individuals will originate from seed. Even the taking of cuttings from female plants may produce male or hermaphrodite cuttings. To optimmise the result, changes in one or more of the above-mentioned environmental factors for a certain period during growth, may be applied. During this time these environmental factors will deviate froom the standard growing system for maximum harvest and quality, as described in nursery literature. The desired change(s) in the environmental factor(s) are started from the moment that the seedling has three pairs of real leaves (not counting the seed-lobes). This is the momment that male and/or female predisposition in florescence is being formed. After approximately two weeks the standard growing system can be reconverted to. FEMINISED CANNABIS SEEDS by Dutch Passion Seed Company, Amsterdam (continued) Of the 5 above-mentioned environmental factors the first three are the most practical: 1) Level of nitrogen and potassium of the seed bed. A heightening of the standard level of nitrogen makes for more female plants originating from the seeds. A lowering of the nitrogen level shows mmore male plants. A heightening of the level of potassium tends to show more male plants, while a lowering of the potassium level shows more female plants. A combination of a higher nitrogen level for the period of a week or two and a lowering ofthe potassium level is recommended. 2) Humidity and moistness of the seed bed. A higher humidity makes for an increase in the number of female plants from seed, a lowering for an increase in male plants. The same is valid for the moistness of the seed bed. 3) Level of temperatures. Lower temperatures make for a larger number of female plants, higher temperatures for more male plants. 4) Colour of light.. More blue light makes for female plants from seed, more red light makes for more male plants. 5) Hours of daylight. Few hours of daylight (for example: 14 hours) makes for more female individuals, a long day (for example: 18 hours) makes for more male plants.




Welcome - Germination - Individual Companies - Full List - Seed payment Mission Statement - Ordering
Medical Patients - Wholesale Seeds- Marijuana Grow Kits - Links - Bud Images - Magic Mushroom Images - - Mushroom Kit - Email